2,370 research outputs found

    Horizon 2020 - European research funding

    Get PDF
    Horizon 2020 is the current European Framework Programme for Research and Innovation. Started on 1 January 2014 as a powerful mean to drive economic growth and jobs creation, Horizon 2020 couples Research and Innovation in its structure. From the perspective of a potential applicant, being informed about all the aspects of Horizon 2020 is relevant for a better chance of success. The Participant Portal of the European Commission is still the main source of information: recently the H2020 Dashboard has been added allowing a deeper knowledge about the Framework Programme. In this paper the H2020 Dashboard is exploited as an instrument to point out some interesting figures starting from a comprehensive Horizon 2020 perspective, then focusing on the Excellent Science Pillar and finally analysing and comparing data from single countries

    A system-level methodology for fast multi-objective design space exploration

    Get PDF

    Neutron Stars: Formed, Spun and Kicked

    Full text link
    One of the primary goals when studying stellar systems with neutron stars has been to reveal the physical properties of progenitors and understand how neutron star spins and birth kicks are determined. Over the years a consensus understanding had been developed, but recently some of the basic elements of this understanding are being challenged by current observations of some binary systems and their theoretical interpretation. In what follows we review such recent developments and highlight how they are interconnected; we particularly emphasize some of the assumptions and caveats of theoretical interpretations and examine their validity (e.g., in connection to the unknown radial velocities of pulsars or the nuances of multi-dimensional statistical analysis). The emerging picture does not erase our earlier understanding; instead it broadens it as it reveals additional pathways for neutron star formation and evolution: neutron stars probably form at the end of both core collapse of Fe cores of massive stars and electron-capture supernovae of ONeMg cores of lower-mass stars; birth kicks are required to be high (well in excess of 100 km/s) for some neutron stars and low (< 100 km/s) for others depending on the formation process; and spin up may occur not just through Roche-lobe overflow but also through wind accretion or phases of hypercritical accretion during common envelope evolution.Comment: 9 pages,4 figures, proceedings paper for 40 Years of Pulsars Conferenc

    First Results on the Removal of Emerging Micropollutants from Municipal Centrate by Microalgae

    Get PDF
    The results of a first campaign of sampling and analyses of emerging micropollutants in the influent (municipal centrate) and effluent of a pilot MBP raceway are reported. The algal population was chiefly made of Chlorella spp. and the pilot worked satisfactorily for the removal of nitrogen. 14 emerging micropollutants were analysed. Average removal efficiencies exceeding 80 % were observed for diclofenac, lamotrigine, ketoprofene, clarithromycin. For such compounds the variability of removal efficiency was also reduced, with respect to the other tested molecules, and was particularly low for diclofenac and lamotrigine. Removal efficiencies over 50 % were measured for azithromycin, metoprolol and irbesartan but with strong variability. Lower removal efficiencies were observed for amisulpride and 5-methylbenzotriazole, while for the remaining compounds the concentrations in the effluent were higher than in the influent

    The hypoxia sensitive metal transcription factor MTF-1 activates NCX1 brain promoter and participates in remote postconditioning neuroprotection in stroke

    Get PDF
    Remote limb ischemic postconditioning (RLIP) is an experimental strategy in which short femoral artery ischemia reduces brain damage induced by a previous harmful ischemic insult. Ionic homeostasis maintenance in the CNS seems to play a relevant role in mediating RLIP neuroprotection and among the effectors, the sodium-calcium exchanger 1 (NCX1) may give an important contribution, being expressed in all CNS cells involved in brain ischemic pathophysiology. The aim of this work was to investigate whether the metal responsive transcription factor 1 (MTF-1), an important hypoxia sensitive transcription factor, may (i) interact and regulate NCX1, and (ii) play a role in the neuroprotective effect mediated by RLIP through NCX1 activation. Here we demonstrated that in brain ischemia induced by transient middle cerebral occlusion (tMCAO), MTF-1 is triggered by a subsequent temporary femoral artery occlusion (FAO) and represents a mediator of endogenous neuroprotection. More importantly, we showed that MTF-1 translocates to the nucleus where it binds the metal responsive element (MRE) located at −23/−17 bp of Ncx1 brain promoter thus activating its transcription and inducing an upregulation of NCX1 that has been demonstrated to be neuroprotective. Furthermore, RLIP restored MTF-1 and NCX1 protein levels in the ischemic rat brain cortex and the silencing of MTF-1 prevented the increase of NCX1 observed in RLIP protected rats, thus demonstrating a direct regulation of NCX1 by MTF-1 in the ischemic cortex of rat exposed to tMCAO followed by FAO. Moreover, silencing of MTF-1 significantly reduced the neuroprotective effect elicited by RLIP as demonstrated by the enlargement of brain infarct volume observed in rats subjected to RLIP and treated with MTF-1 silencing. Overall, MTF-dependent activation of NCX1 and their upregulation elicited by RLIP, besides unraveling a new molecular pathway of neuroprotection during brain ischemia, might represent an additional mechanism to intervene in stroke pathophysiology

    Simbol-X Hard X-ray Focusing Mirrors: Results Obtained During the Phase A Study

    Full text link
    Simbol-X will push grazing incidence imaging up to 80 keV, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. The superb hard X-ray imaging capability will be guaranteed by a mirror module of 100 electroformed Nickel shells with a multilayer reflecting coating. Here we will describe the technogical development and solutions adopted for the fabrication of the mirror module, that must guarantee an Half Energy Width (HEW) better than 20 arcsec from 0.5 up to 30 keV and a goal of 40 arcsec at 60 keV. During the phase A, terminated at the end of 2008, we have developed three engineering models with two, two and three shells, respectively. The most critical aspects in the development of the Simbol-X mirrors are i) the production of the 100 mandrels with very good surface quality within the timeline of the mission; ii) the replication of shells that must be very thin (a factor of 2 thinner than those of XMM-Newton) and still have very good image quality up to 80 keV; iii) the development of an integration process that allows us to integrate these very thin mirrors maintaining their intrinsic good image quality. The Phase A study has shown that we can fabricate the mandrels with the needed quality and that we have developed a valid integration process. The shells that we have produced so far have a quite good image quality, e.g. HEW <~30 arcsec at 30 keV, and effective area. However, we still need to make some improvements to reach the requirements. We will briefly present these results and discuss the possible improvements that we will investigate during phase B.Comment: 6 pages, 3 figures, invited talk at the conference "2nd International Simbol-X Symposium", Paris, 2-5 december, 200

    The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities

    Get PDF
    We study the long term evolution of the distance between two Keplerian confocal trajectories in the framework of the averaged restricted 3-body problem. The bodies may represent the Sun, a solar system planet and an asteroid. The secular evolution of the orbital elements of the asteroid is computed by averaging the equations of motion over the mean anomalies of the asteroid and the planet. When an orbit crossing with the planet occurs the averaged equations become singular. However, it is possible to define piecewise differentiable solutions by extending the averaged vector field beyond the singularity from both sides of the orbit crossing set. In this paper we improve the previous results, concerning in particular the singularity extraction technique, and show that the extended vector fields are Lipschitz-continuous. Moreover, we consider the distance between the Keplerian trajectories of the small body and of the planet. Apart from exceptional cases, we can select a sign for this distance so that it becomes an analytic map of the orbital elements near to crossing configurations. We prove that the evolution of the 'signed' distance along the averaged vector field is more regular than that of the elements in a neighborhood of crossing times. A comparison between averaged and non-averaged evolutions and an application of these results are shown using orbits of near-Earth asteroids.Comment: 29 pages, 8 figure

    Volumetric Absorptive Microsampling (VAMS) for Targeted LC-MS/MS Determination of Tryptophan-Related Biomarkers

    Get PDF
    L-Tryptophan (TRP) metabolites and related biomarkers play crucial roles in physiological functions, and their imbalances are implicated in central nervous system pathologies and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, schizophrenia and depression. The measurement of TRP metabolites and related biomarkers possesses great potential to elucidate the disease mechanisms, aid preclinical drug development, highlight potential therapeutic targets and evaluate the outcomes of therapeutic interventions. An effective, straightforward, sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of 24 TRP-related compounds in miniaturised murine whole blood samples. Sampling and sample pretreatment miniaturisation were achieved thanks to the development of a volumetric dried blood microsampling approach. Volumetric absorptive microsampling (VAMS) allows the accurate sampling of microvolumes of blood with advantages including, but not limited to, minimal sampling invasiveness, logistical improvements, method sustainability in terms of solvents and energy consumption, and improvement of animal studies in the framework of the 3Rs (Replacement, Reduction and Refinement) principles on animal welfare. The VAMS-LC-MS/MS method exhibited good selectivity, and correlation coefficient values for the calibration curves of each analyte were &gt;0.9987. The limits of quantitation ranged from 0.1 to 25 ng/mL. The intra- and inter-day precisions in terms of RSD were &lt;9.6%. All analytes were stable in whole blood VAMS samples stored at room temperature for at least 30 days with analyte losses &lt; 14%. The developed method was successfully applied to the analysis of biological samples from mice, leading to the unambiguous determination of all the considered target analytes. This method can therefore be applied to analyse TRP metabolites and related biomarkers levels to monitor disease states, perform mechanistic studies and investigate the outcomes of therapeutic interventions

    sodium calcium exchanger as main effector of endogenous neuroprotection elicited by ischemic tolerance

    Get PDF
    Abstract The ischemic tolerance (IT) paradigm represents a fundamental cell response to certain types or injury able to render an organ more "tolerant" to a subsequent, stronger, insult. During the 16th century, the toxicologist Paracelsus described for the first time the possibility that a noxious event might determine a state of tolerance. This finding was summarized in one of his most important mentions: "The dose makes the poison". In more recent years, ischemic tolerance in the brain was first described in 1991, when it was demonstrated by Kirino and collaborators that two minutes of subthreshold brain ischemia in gerbils produced tolerance against global brain ischemia. Based on the time in which the conditioning stimulus is applied, it is possible to define preconditioning, perconditioning and postconditioning, when the subthreshold insult is applied before, during or after the ischemic event, respectively. Furthermore, depending on the temporal delay from the ischemic event, two different modalities are distinguished: rapid or delayed preconditioning and postconditioning. Finally, the circumstance in which the conditioning stimulus is applied on an organ distant from the brain is referred as remote conditioning. Over the years the "conditioning" paradigm has been applied to several brain disorders and a number of molecular mechanisms taking part to these protective processes have been described. The mechanisms are usually classified in three distinct categories identified as triggers, mediators and effectors. As concerns the putative effectors, it has been hypothesized that brain cells appear to have the ability to adapt to hypoxia by reducing their energy demand through modulation of ion channels and transporters, which delays anoxic depolarization. The purpose of the present review is to summarize the role played by plasmamembrane proteins able to control ionic homeostasis in mediating protection elicited by brain conditioning, particular attention will be deserved to the role played by Na+/Ca2+ exchanger

    Tidally-Induced Apsidal Precession in Double White Dwarfs: a new mass measurement tool with LISA

    Full text link
    Galactic interacting double white dwarfs (DWD) are guaranteed gravitational wave (GW) sources for the GW detector LISA, with more than 10^4 binaries expected to be detected over the mission's lifetime. Part of this population is expected to be eccentric, and here we investigate the potential for constraining the white dwarf (WD) properties through apsidal precession in these binaries. We analyze the tidal, rotational, and general relativistic contributions to apsidal precession by using detailed He WD models, where the evolution of the star's interior is followed throughout the cooling phase. In agreement with previous studies of zero-temperature WDs, we find that apsidal precession in eccentric DWDs can lead to a detectable shift in the emitted GW signal when binaries with cool (old) components are considered. This shift increases significantly for hot (young) WDs. We find that apsidal motion in hot (cool) DWDs is dominated by tides at orbital frequencies above ~10^{-4}Hz (10^{- 3}$Hz). The analysis of apsidal precession in these sources while ignoring the tidal component would lead to an extreme bias in the mass determination, and could lead us to misidentify WDs as neutron stars or black holes. We use the detailed WD models to show that for older, cold WDs, there is a unique relationship that ties the radius and apsidal precession constant to the WD masses, therefore allowing tides to be used as a tool to constrain the source masses.Comment: 23 pages, 7 figures, revised to match accepted ApJ versio
    corecore